Manning's Equation and Watercourse Design Formulas

Manning Equation

$\mathrm{V}=(1 / \mathrm{n}) * \mathrm{R}^{2 / 3} * \mathrm{~S}^{1 / 2}$
$\mathrm{A}=\mathrm{Q} / \mathrm{V}$
$\mathrm{P}=\mathrm{A} / \mathrm{R}$

Where
Q = Discharge, L/s
$\mathrm{V}=$ Average Flow Velocity, m/s
$\mathrm{n}=$ Manning's Coefficient, Constant
$\mathrm{R}=$ Hydraulic Radius, $\mathrm{m}=\mathrm{A} / \mathrm{P}$
$\mathrm{P}=$ Wetted Perimeter, m
$\mathrm{S}=$ Longitudinal Slope or Energy Gradient, m/m

1. Flow Area and Wetted Perimeter of Rectangular X-section

A	$=\mathrm{bd}$
P	$=\mathrm{b}+2 \mathrm{~d}$
b	$=\left(\mathrm{P}+\left(\mathrm{P}^{2}-8 \mathrm{~A}\right)^{1 / 2}\right) / 2$
d	$=\mathrm{A} / \mathrm{b}$

$\mathrm{b}=$ Flow bottom width, m
$\mathrm{d}=$ Flow depth, m

2. Flow Area and Wetted Perimeter of Trapezoidal X-section (Sharp Corners)

A $\quad=b d+d^{2} Z$
$\mathrm{P} \quad=\mathrm{b}+2 \mathrm{~d}\left(\mathrm{Z}^{2}+1\right)^{1 / 2}$
$\mathrm{d} \quad=\left(\mathrm{P}-\left(\mathrm{P}^{2}-4 \mathrm{~A}(2 \mathrm{X}-\mathrm{Z})\right)^{1 / 2}\right) /(2(2 \mathrm{X}-\mathrm{Z}))$

$$
\begin{aligned}
& \mathrm{Z}=\text { Side Slope } \\
& \mathrm{X}=\left(\mathrm{Z}^{2}+1\right)^{1 / 2} \\
& \text { Optimum X-Section: } \mathrm{b}=2 \mathrm{~d}\left(\left(\mathrm{Z}^{2}+1\right)^{1 / 2}-\mathrm{Z}\right)
\end{aligned}
$$

$\mathrm{b} \quad=\left(\mathrm{A}-\mathrm{Z} \mathrm{d}^{2}\right) / \mathrm{d}$

Trapezoidal Concrete Lined (Sharp Corners)

3. Flow Area and Wetted Perimeter of Trapezoidal X-section (Round Corners)

A	$=\mathrm{bd}+\mathrm{d}^{2} \theta+\mathrm{d}^{2} \cot \theta$	
	$=\mathrm{bd}+\mathrm{d}^{2}(\theta+\cot \theta)$	
P	$=\mathrm{b}+2 \mathrm{~d} \theta+2 \mathrm{cot} \theta$	
	$=\mathrm{b}+2 \mathrm{~d}(\theta+\cot \theta)$	
d	$=\left(\mathrm{P}-\left(\mathrm{P}^{2}-4 \mathrm{AX}\right)^{1 / 2}\right) /(2 \mathrm{X})$	$\mathrm{Z}=$ Side Slope
	$=\cot \theta$	
b	$=\left(\mathrm{A}-\mathrm{X} \mathrm{d} \mathrm{d}^{2}\right) / \mathrm{d}$	

Trapezoidal Concrete Lined (Round Corners)

4 Flow Area and Wetted Perimeter of Triangular X-section (Sharp Corner)

$$
\begin{array}{ll}
\mathrm{A} & =\mathrm{d}^{2} \mathrm{Z} \\
\mathrm{P} & =2 \mathrm{~d}\left(\mathrm{Z}^{2}+1\right)^{1 / 2} \\
\mathrm{~d} & =2 \mathrm{RX} / \mathrm{Z}
\end{array}
$$

$$
\begin{aligned}
& \mathrm{Z}=\text { Side Slope } \\
& \mathrm{X}=\left(\mathrm{Z}^{2}+1\right)^{1 / 2} \\
& \mathrm{R}=\mathrm{A} / \mathrm{P}
\end{aligned}
$$

Triangular Concrete Lined Section (Sharp Corner)

5. Flow Area and Wetted Perimeter of Triangular X-section (Round Corner)

A $\quad=d^{2} \theta+d^{2} \cot \theta$
$=\mathrm{d}^{2}(\theta+\cot \theta)$
$\mathrm{P} \quad=2 \mathrm{~d} \theta+2 \mathrm{~d} \cot \theta$
$=2 \mathrm{~d}(\theta+\cot \theta)$
$\mathrm{d} \quad=2 \mathrm{R}$

$$
\begin{aligned}
\cot \theta & =\mathrm{Z} \\
& =\text { Side Slope } \\
\mathrm{X} & =(\theta+\cot \theta) \\
\mathrm{R} & =\mathrm{A} / \mathrm{P}
\end{aligned}
$$

Triangular Concrete Lined Section (Round Corner)

6 Flow Area and Wetted Perimeter of Parabolic X-section
A $\quad=2 / 3 *{ }^{*} * d$
$\mathrm{P} \quad=\left(\left(\mathrm{t} / 2^{*}\left(\left(\left(\left(1+(4 * \mathrm{~d})^{\wedge} 2\right)^{\wedge} 0.5\right)+\left(\left(\mathrm{t} /(4 * \mathrm{~d}) * \ln \left(\left(4^{*} \mathrm{~d} / \mathrm{t}\right)+\left(1+\left(\left(4^{*} \mathrm{~d} / \mathrm{t}\right)^{\wedge} 2\right)^{\wedge} 0.5\right)\right)\right) / 1000\right.\right.\right.\right.\right.$

[^0]$\mathrm{A} \quad=\mathrm{r}^{2} \theta / 2-(\mathrm{r}-\mathrm{d}) * \mathrm{t}$
\[

$$
\begin{aligned}
& \cos \theta / 2=(\mathrm{r}-\mathrm{d}) / \mathrm{r} \\
& \mathrm{r}=\text { Pipe radius, } \mathrm{m} \\
& \mathrm{t}=\text { Top flow width, } \mathrm{m} \\
& =2 \mathrm{r} \sin \theta / 2
\end{aligned}
$$
\]

Precast Semi Circular Concrete Lined Section

[^0]: Precast Parabolic Concrete Lined Section

