Manning's Equation and Watercourse Design Formulas

Manning Equation

	Where
$\mathbf{V} = (1/n) * \mathbf{R}^{2/3} * \mathbf{S}^{1/2}$	Q = Discharge, L/s
A = Q/V	V = Average Flow Velocity, m/s
P = A/R	n = Manning's Coefficient, Constant
	R = Hydraulic Radius, m = A/P
	P = Wetted Perimeter, m
	S = Longitudinal Slope or Energy Gradient, m/m

1. Flow Area and Wetted Perimeter of Rectangular X-section

Rectangular Double Brick Lined Section

2. Flow Area and Wetted Perimeter of Trapezoidal X-section (Sharp Corners)

$$\begin{array}{ll} A & = b \ d + d^2 Z \\ P & = b + 2 \ d \ (Z^2 + 1)^{1/2} \\ d & = (P - (P^2 - 4A(2X - Z))^{\frac{1}{2}})/(2(2X - Z)) \\ b & = (A - Z \ d^2)/d \end{array} \begin{array}{l} Z = \text{Side Slope} \\ X = (Z^2 + 1)^{1/2} \\ \text{Optimum } X - \text{Section: } b = 2 \ d \ ((Z^2 + 1)^{1/2} - Z) \end{array}$$

Trapezoidal Concrete Lined (Sharp Corners)

3. Flow Area and Wetted Perimeter of Trapezoidal X-section (Round Corners)

$$A = b d + d^{2} \theta + d^{2} \cot \theta$$

$$= b d + d^{2} (\theta + \cot \theta)$$

$$P = b + 2 d\theta + 2d \cot \theta$$

$$= b + 2 d (\theta + \cot \theta)$$

$$d = (P - (P^{2} - 4AX)^{\frac{1}{2}})/(2X)$$

$$b = (A - X d^{2})/d$$

$$Z = Side Slope$$

$$= \cot \theta$$

$$X = (\theta + \cot \theta)$$

Trapezoidal Concrete Lined (Round Corners)

4 Flow Area and Wetted Perimeter of Triangular X-section (Sharp Corner)

А	$= d^2 Z$	Z = Side Slope
Р	$= 2 d (Z^2 + 1)^{1/2}$	Z = Side Slope X = (Z2+1)1/2
d	= 2 R X/Z	$\mathbf{R} = \mathbf{A}/\mathbf{P}$

Triangular Concrete Lined Section (Sharp Corner)

5. Flow Area and Wetted Perimeter of Triangular X-section (Round Corner)

Triangular Concrete Lined Section (Round Corner)

6 Flow Area and Wetted Perimeter of Parabolic X-section

A =
$$2/3*t*d$$

 $P = ((t/2*((((1+(4*d)^{2})^{0.5}) + ((t/(4*d)*\ln((4*d/t)+(1+((4*d/t)^{2})^{0.5})))/1000)))) = (t/2*(((t/(4*d)^{0.5})) + ((t/(4*d)*\ln((4*d/t))))))) = (t/2*(t/(4*d)^{0.5}))) = (t/2*(t/(4*d)^{0.5})))$

Precast Parabolic Concrete Lined Section

7 Flow Area and Wetted Perimeter of Semi-Circular X-section

A
$$= r^2 \theta/2 - (r-d) * t$$

P $= r \theta$
 $cos \theta/2 = (r-d)/r$
r = Pipe radius, m
t = Top flow width, m
 $= 2 r \sin \theta/2$

Precast Semi Circular Concrete Lined Section